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Abstract 

The homogenized extensional and flexural properties of a large tow, two- 
dimensional, braided carbon-fiber composite lamina were evaluated using 
analytical and numerical methods. The plane-stress composite lamina was 
assumed to be periodic in its plane and was modeled with a single 
representative vohtme element. The homogenized elastic properties were 
analytically estimated using beam-theory concepts and upper and lower 
bound techniques as well as using three-dimensional finite element 
analyses. The homogenized extensional and bending lamina properties are, 
in general, distinct properties and are not simply related to each other as in 
monolithic beams and plates or in composites with very fine and highly 
periodic microstructures. The importance and cause of distinct 
homogenized extensional and flexural elastic properties is briefly 
discussed. 

1.0 Introduction 

Recently the use of large-tow braided composites has been evaluated by the automotive 
industry. These materials are manufactured using automated processes and can be used for 
complicated structural components. They generally exhibit better toughness properties 
than analogous unidirectional composite stacking sequences because the braided 
architecture is more resistant to delamination and in plane deformation. In addition, the 
large tow characteristic permits the use of fewer laminae. However, the complicated fiber 
architecture of these large-tow braided structures does not permit the use of traditional 
homogenization techniques to examine their lamina-level mechanical behavior. 

1. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National 
Laboratory under Contract W-7405Eng-48. 

Elastic Properties of Large Tow 2-D Braided Composites by Nunmical and Analytical Methods September 9.1998 1 



That large tow braided composite structures possess distinct flexural and extensional 
properties is the main concern of this study. Whitcomb et al (1998) observed using finite 
element analysis that the ratio of the effective flexural modulus to the effective extensional 
modulus for a two ply plain weave composite structure is less than 0.7. The ratio increases 
to 0.95 for eight ply structures. It is believed that this phenomenon is geometrically 
dependent, and thus it is not unique to these textile composites. Pagan0 (1974) also noted 
this discrepancy in the flexural and extensional properties for unidirectional boron-epoxy 
composite structures of too few layers. The phenomenon has not been extensively 
explored in the literature because traditional small tow composite laminates, widely used 
in the aerospace industry, generally contain a large number of lamina whose 
microstructure is relatively fine. 

This study aims to examine the elastic flexural and extensional properties of large-tow 
braided composites using numerical and analytical methods. The geometry of the braided 
architecture was modeled using idealizations similar to those presented by Naik (1994) 
and others (e.g., Vandeurzen et al, 1997) in which the composite was idealized as an array 
of repeating unit cells. The homogenized elastic properties of the unit cell were 
determined by finite element analysis (FEA). In addition, an analytical estimate of its 
properties was performed using beam-theory concepts and pseudo upper and lower bound 
techniques. The development of both the 3-D finite element (FE) and 1-D laminate beam 
models and their results are discussed in context of the braided architecture. 

The following sections describe the development of both the 3-D FE and 1-D laminate 
beam models and their results. First, the braided geometry is idealized, and a 
representative volume element or “unit cell” is established. Second, the FE model is 
presented including descriptions of the specific braided composite material properties and 
imposed boundary conditions. Also included is a discussion of how classical plate theory 
was used to infer the effective elastic properties from the numerical simulations. In the 
third section, two 1-D laminate beam models are constructed. The “bounding” techniques 
used to infer the mechanical properties from these models are described along with the 
results. In the final section, the general conditions which require distinct effective 
extensional and flexural properties to accurately model a braided lamina or laminate are . 
discussed and contrasted to those for traditional unidirectional composites. 
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2.0 Development of the Representative Volume Element 

An appropriate geometric model of the braided composite was developed to analyze the 
material’s mechanical behavior. First, irregular geometric features of the fiber structure 
were identified. Then they were simplified ‘to develop a workable geometric model of the 
composite material. Utilizing the periodic nature of the braid structure, a representative 
volume element (RVE) was identified from the simplified geometric model. It was used in 
both the 3-D FEA and the 1-D homogenization analysis. The following subsections 
describes the physical structure of a braided composite and its simplified geometrical 
representation. 

2.1. Physical Description of Braided Composite 

Figure 2.1 shows a schematic of the triaxial braid fiber structure (Naik ef al, 1994). The 
three main braiders are oriented in the +8, O’, and -9 direction. They are braided in a 1x1 
pattern with the &J braiders alternately undulating under and over each axial (0”) braider. 
The fiber bundles of the large tow composites used by automotive industry typically 
contain on the order of 1Ok filaments. 

braiders 

Figure 2.1 Schematic of braid pattern (Naik et al, 1994) 

Figure 2.2 shows two sectional micrographs of a multi-ply braided composite laminate 
(Dadkhah et al, 1995). It can observed that the fiber geometry exhibits many irregular 
features that are difficult to model. For example only two of the three fiber bundles are in 
contact typically at the cross over junctions. The junctions are smeared because during 
manufacturing the braid is allowed to relax causing the braiders to shift. This also causes 
all three braiders to undulate. The braiding process also causes the initial circular cross 
section of the braider tow to deform into a lenticular cross section. As a result, the material 
appears densely packed and contains relatively few pure resin pockets. 



. 
. 

Figure 2.2 Cross sectional micrographs of B [O”/MOo], Vt= 37%, laminate in (a) axial fiber 
direction, and (b) in braider direction (Dadkbah etaI, 1995) 

2.2 Simplified Geometric Model 

A simplified geometric model of the triaxial braided architecture was developed, and is 
shown in Figure 2.3. All three braiders in the model were assumed to stack up at the cross 
over regions. This required that the diameter of the axial braider, d,, be larger than that of 

the 4, braiders db,. Their ratio was: 

5 = case 
da 

(b) 

(1) 

Figure 2.3 (a) Planar view of geometric model, (III) cross sections of the geometric model along the 
axial and -0 braiders, (c) schematic of fiber architecture (Naik et al, 1994), and (d) cross 
sectional micrographs along the axial and f8 braiders (Dadkhah et al, 1995). 



Also, the model only incorporated the undulation of the +0 braiders, and the lenticular 
cross section of the braiders were simplified to be rectangular to preserve the flattened and 
expansive characteristic of the fiber tows. 

Figure 2.3 shows that the simplified geometric model contains some rather artificial 
features. Mainly, numerous distinct regions of pure resin and fiber are present causing the 
model to appear sparse and discontinuous. The transitions from planar fibers to undulated 
fibers to matrix are abrupt. This is opposed to the dense melded appearance of the 
sectional micrographs shown in Figure 2.2. These artificial features may generate a softer 
elastic response in the geometric model compared to that of the actual composite. 

2.3 Geometry of the Representative Volume Element 

The periodic nature of the simplified geometric model permits the repeating unit cell, 
shown in Figure 2.4, to be chosen as the RVE of the braided composite. The unit cell can 
be easily identified in Figure 2.3 as the rectangle, BCDE. 

A 

- 
tb 

- 

Figure 2.4 The unit cell (a) planar view, (b) cross section in axial braider direction, and (c) cross 
section in +8 braider direction 

The spacing between the axial braiders, IV, the braider angle, 8, the filament count, n, the 
filament diameter, dp and the lamina thickness, t, were assumed to be manufactured 
specified quantities. The diameter of the axial braider, da, expressed in Eq. (2) was 
determined from df; n, t and the packing density of the axial tows, pa. Equation (2) reflects 
both the initial circular and final flattened geometry of the fiber tows. The braider 
thickness, tb, was set at one third of the lamina thickness. The crimp angle, $, the 
undulation angle of the +8 braiders, was determined by Eq. (3) 

. 
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d,t = 
Pll 

4= atan 
2tb 

(w - d,)/sin0 

(2) 

(3) 
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3.0 Finite Element Analysis 

A 3-D FE model of the unit cell was developed to probe the in-plane extensional and 
flexural elastic properties of the braided composite plate. The FE analysis was conducted 
using NIKE3D (Maker et al, 1995), a nonlinear implicit FE code developed at LLNL. The 
following sections discuss the development of the FE model, including the construction of 
appropriate boundary conditions and loading geometries. The results of the FE analy& 
are presented in Section 3.5. 

3.1 The Finite Element Mesh 

Figure 3.la displays a planar view of the 3-D FE mesh. A view of just the braid 
architecture is shown in Figure 3.lb. The mesh layout was chosen to minimize mesh 
discontinuities and irregularly shaped elements. These features artificially stiffen the FE 
model. In the plane, the mesh does not exhibit any irregular features. However, mesh 
discontinuities and wedge elements were needed to connect the undulations of the +8 
braiders to the adjacent resin regions. Mesh discontinuities were resolved using “tied” 
slide surfaces. The mesh was constructed from 8-node, selectively reduced, incompatible 
mode, hexahedral elements. Where bending and other higher order deformation modes are 
present, the incompatible mode formulation results in a more accurate response. 

The dimensions of the mesh were chosen to match a specific carbon-fiber material of fiber 
volume fraction, V)=30.5%. The axial spacing, w, the lamina thickness, t, and braid angle, 

0, were specified at 1.016 cm (0.40 in), 0.1415 cm (0.0557 in.), and 30’. Each braider 
consisted of 50k filaments, each with a filament diameter of df7.2 pm. A moderate 
packing volume fraction, pa, of 70% was assumed for the axial braiders. Using Eq. (2) the 
axial fiber diameter, da, was calculated to be 7.112 mm (0.28 in.). From this, the *te 
braider diameter, db, was determined from Eq. (1) to be 8.212 mm (0.323 in.). This gives 
the off axis braiders a packing efficiency, pb, of 60% to achieve the necessary Vf The 

crimp angle, 4, was calculated from Eq. (3) to be 8.79’. 
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(a) 6) 

Figure 3.1 (a) The FE mesh, and (b) fiber structure of the FE mesh 

3.2 Material Properties 

The materials properties used in the FEA were obtained from Marrey and Sankar (1997) 
for a low modulus graphite-epoxy composite of V’64%. The material properties for the 
60% (*0 braiders) and 70% (axial braiders) Vf regions were obtained by scaling the 
V’64% data using the rule of mixtures. Table 1 lists their properties. The subscripts I and 
2 denote fiber and transverse material directions. 

TABLE 1. Material Properties of FE model 

El @Pa) J32 Wa) $2 GW vtt vu 
Axial fiber region 158.375 12.830 6.038 0.230 0.300 

f 8 fiber region 135.750 10.997 5.175 0.230 0.300 

Resin region 3.450 3.450 3.450 0.350 0.350 

3.3 Boundary Constraipts 

Once the geometry of the unit cell was determined, periodic displacement boundary 
conditions were developed to model the constraints imposed by neighboring unit cells. In 
accordance with a plane-stress analysis, boundary constraints were applied only on the 
x=+w and the y= +I boundaries, where Z=w/tun~. Two sets of boundary conditions were 
developed for: (1) in-plane tensile and bending loads, and (2) in-plane shear loads. 
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3.3.1 Tensile and Flexural Model 

The following periodic displacement boundary conditions, ui(x,y,z), were used to model 
the constraints imposed on the FE mesh boundaries by neighboring unit cells. The 
constraints maintain a continuous displacement field between adjacent unit cells. 

UJX, y=5 z) = qx, y=-1, z) (4) 

Uy(x=w, Y, z) = Uy(x=-w, y, z) (5) 

U,(x. y=f, z) = U,(& y=-1, z) (6) 

~z(x=w, y, z) = U,(x=-w, y, z) (7) 

The center node of the mesh was pinned to lock out various rigid body modes. 

u,(x=o,y=o,z=o) = ~y(x=O,Y=O,z=O) = uz(x=o,y=o,z~o) = 0 (8) 

In addition, as a first order approximation, the x=&w and the y= *I planes were required to 
remain planar during deformation. To accomplish this, the cell edges were affixed onto 
rigid planar shells using “sliding only” slide surfaces. These “sliding only” interfaces 
permit the mesh boundaries to develop independent tangential displacements along the 
boundary-shell interface while still constraining the mesh boundaries to reside in the plane 
of the rigid shells. Consequently, the mesh boundaries transmit no tangential tractions 
across the interface. 

As will be discussed in Section 3.4, classical plate theory was used to evaluate the elastic 
properties of the unit cell. The coefficients of the extensional, coupling, and bending 
stiffness matrices were determined by performing a series of simulations with different 
displacement and rotation boundary conditions imposed on the rigid boundary shells. 
Each boundary shell has three rotational and three displacement degrees of freedom. To 
solve for the tensile and flexural terms, the following displacement, 4, and rotation, Oi, 
boundary conditions were individually imposed on the four rigid shells. The terms, zzll 
and &22 are the desired nominal strain in the transverse and longitudinal direction, 
respectively, and ~11 and 1~22 are the desired nominal curvature about the transverse and 
longitudinal axes. The loading geometries are illustrated in Figure 3.2. 

A,(x=w) = -A+-w) = &ll~ (a~~otherAiandOizem) (9) 

Ay(y=o = -Ay(y+ = ~221 (a~ other Ai ati Oi zem) (10) 

O,(y=l) = -O,(y=-l)= ~221 (au other Ai d Oi zero) (11) 

Q,(x=w) = --Oy(x=-w)= K11 W (all other Ai and Oi zero) (12) 
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Figure 3.2 Illustration of loading geometry for (a) tension in longitudinal direction, (b) tension in 
the transverse direction, (c) rotation about the transverse axis, and (d) rotation about 
longitudinal axis 

The applied displacements and rotations were small so that the resulting strains and 
curvatures developed in unit cell were on the order of lo-‘. The small values were chosen 
to avoid non-linear geometry affects. 

3.3.2 Shear Model 

To generate pure in-plane shear, “tied” slide surfaces were used to affix the mesh 
boundaries onto the rigid boundary shells. The “tied” interfaces restrict all independent 
tangential and normal displacements at the mesh boundary-shell interface. As a result, 
tangential loads can be transmitted to the mesh through the “tied” sliding surfaces. 
Another set of displacement and rotation loading boundary constraints were applied to the 
“tied” rigid shells to determine the shear terms in the [A], [B], and Ip] matrices. The 
constraints expressed by Eq. (13)-(14) were individually imposed to determine the in- 
plane shear modulus and the shear-extension coupling terms. 

Ax~r=u=y,, 1 

AJY=-1) = cl,(y=fl) = 0 

Ay = AZ = 8, = 0, = 0, for all boundary sheik 

(13) 

Ay(x=w)=y12w 

Ay(x=-w) = 6,(x=+w) = 0 

Ax = AZ = 8, = 8, = 0, for all boundary shells 

(14) 
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(a) cb) 

Figure 3.3 Illustration of loading geometry for (a) shearing in the transverse dike&ion, and (b) 
shearing in the longitudinal direction. 

3.4 -Determining the In-Plane Elastic Constants 

As described in the previous section, selective displacements and rotations were applied to 
the boundary shells of the FE model to probe its elastic response. Classical plate theory 
was used to infer the elastic properties of the unit cell from the reaction forces obtained at 
the mesh boundary-shell interfaces. Equation (15) shows the constitutive model for plates, 
in which the [A], Is], and ED] matrices relate Ng and Mp the force per unit length and 

moment per unit length, to &‘d and K’ij, the midplane strains and curvatures. 

Nil 

N22 

N66 

Ml1 

M22 

All AlZ Al6 

A,, A22 A26 

= A6l A62 A66 

1 1 1 Et 

(15) 

41 42 
1. 

B2142 42 

B61 B62 63 

41 42 4, 

D2142 
4 42 

Eq. (16) relates the average plate stress, <T*, and the average moments, (f o>*, to the 

resultant forces and moments; 
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The resultant forces and moments were obtained from the reaction forces and moments, 
F,, Fu h4” and AI,,, of the rigid shells as shown below. 

Nil F./W) 

N22 F,AW 
N, = F,/W) (17) 

Ml1 My420 

M22 ~,aw 

Since only one non-zero midplane strain or curvature was imposed in each FEA, the 
resultant forces and moments, when normalized by the imposed strain or curvature, 
directly correspond to the coefficients of the [A], [B], and @I] matrices. Finally the in- 
plane homogenized extensional and flexural Young’s moduli, El, E2, Z$, and Efl, shear 
modulus, G, and Poisson’s ratios, ~12, and, vp2, of the unit cell were obtained by inverting 
the [A] and [D] matrices as shown in m-(18) and (19). The terms, $6 and Qj are the in- 
plane shear-extensional coupling terms. 

3.5 FE Results 

As a check, the FE model was used to calculate the in-plane extensional, shear, and 
flexural properties of a homogenous isotropic unit cell. The results were accurate to 
within -60.1%. The following subsections present the results of the FE analysis for the 
braided composite unit cell. First, the flexural and extensional properties of the unit cell 
are presented and compared. Then, the values of the bending-extensional coupling matrix 
and the shear-extension coupling terms are discussed. 

3.5.1 Comparison of Flexural and Extensional Moduli 

Table 2 presents the in-plane extensional and flexural Young’s moduli and Poisson’s ratios 
of the braided composite unit cell as determined for imposed strains of 10e5 and rotations 
of 5x10-C The results show a large difference between the in-plane extensional and 
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flexural moduli. In the longitudinal direction, the flexural modulus was a mere 32% of the 
extensional modulus. Similarly, in the transverse direction, the flexural modulus was 71% 
of the extensional modulus. This dramatic difference in the properties can be attributed to 
the fiber architecture of the unit cell. 

TABLE 2. Elastic Properties of the Unit Cell as Determine by FEA 

Extensional 
Flexural 

El (GPa) Et (GPa) Gt GPa) V1t 
51.926 7.646 6.523 0.766 

16.610 5.419 ------ 0.589 

Figure 3.4 shows the bending .stress contour of the unit cell subjected to a rotation about 
the transverse axis. The resin material has been removed and the displacements have been 
magnified by lo5 to better observe the behavior of the braiders. The contours show that the 
bending stress experienced by the off axis braiders is approximately twice that of the axial 
braiders. The *30 braiders support significantly higher bending loads because they lie 
farther away from the neutral axis as compared to the axial braiders whose midplane lies 
on the neutral plane. Consequently, only the *30 braiders contribute significantly to the 
overall bending stiffness of the unit cell. 

surfm Ini&a I stma 
Rd frame qlcbd 

Figure 3.4 Bending stress contour of unit cell subjected to a rotation about the transverse axis 

Unlike in the bending case, all three braiders significantly contribute to the overall 
extensional stiffness of the unit cell. Figure 3.5 shows the tensile stress contours of the unit 
cell subjected to a longitudinal strain. A significant reduction in the longitudinal stress is 
observed at the crossover region. This indicates that the load is being effectively 
distributed among the three braiders. The axial fiber (El=158 GPa) is significantly stiffer 
than the rotated *30 braiders (El=25 GPa) in the longitudinal direction. Consequently, the 
overall extensional stiffness, dependent on the stiffness of both the axial and +30 braiders, 
is significantly higher than the overall bending stiffness, which depends primarily on the 
stiffness of the 530 braiders. 
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Figure 3.5 Longitudinal tensile stress contour of unit cell subjected to longitudiial strain 

3.5.2 The Bending-Extension and Shear-Extension Coupling Terms 

FEA was also used to determine the terms of the bending-extension coupling stiffness 
matrix and the shear-extension coupling terms. In general, the values were several orders 
of magnitude smaller than the terms in the bending and extensional matrices, and many of 
the coefficients demonstrated a strong dependence upon the magnitude of the imposed 
deformation - a behavior attributed to non-linear geometric affects. Consequently, the 
coupling stiffness coefficients were approximated to be zero. It is proposed that no 
significant coupling between the bending and extensional response and between the shear 
and extension response of the unit cell was observed because of the symmetric nature of 
the braid architecture. The distributions of the *6 planar braider materials and the ~tWlt@  
undulating braider materials are symmetric about the midpoint and midplane of the unit 
cell. 
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4.0 Homogenized Beam Analysis 

Two simple 1-D Bernoulli-like beam models of the unit cell, one with the neutral axis in 
the longitudinal direction and the other in the transverse direction, were developed to 
evaluate its in-plane elastic properties. For both directions, classical lamination theory was 
used to determine the effective [A], (B] and @I] matrices for each cross section. From this, 
the effective extensional and flexural Young’s moduli, E* and Ef*, as a function of distance 
along the neutral axis were determined. Finally, applying an elementary form of 
variational analysis, pseudo upper and lower bound estimates of the average effective 
extensional and flexural Young’s moduli, <E*> and <Ef*> of the unit cell were inferred 
from the cross sectional [A] and [D] matrices. 

The following subsections discuss the analytical procedure in more detail including: (1) 
developing the geometry of the beam models, (2) determining the constitutive properties 
of each material region, (3) calculating the [A], [B], and [D] matrices for each cross 
section, and (4) evaluating upper and lower bound estimates of the homogenized 
extensional and flexural Young’s moduli. The analytical and FE results are presented in 
Section 4.5. Though the 3-D FE based results are more accurate, the simple 1-D beam 
models yield insight to how the homogenized material properties depend on the braid 
architecture. 

4.1 Geometry of Beam Models 

Figure 4.1 and Figure 4.2 show two 1-D beam models of the unit cell, the former with the 
neutral axis in the longitudinal direction, and the latter w#h the neutral axis in the 
transverse direction. The beams consist of three equal thickness plies of inhomogenous 
material. Consistent with the Bernoulli beam theory and lamination theory, planar sections 
were assumed to remain planar after deformation. 

X 

(4 (4 

Figure 4.1(a) 1-D longitudinal beam model of unit cell, (b) cross section aty=Z, (c) cross section at 

y=-(Z- f& ), and (d) cross section at y=O 
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Cd) 

Figure 4.2 (a) 1-D transverse beam model of unit cell, (b) cross section at X=W, (c) cross section at 
x=w/2, and (d) cross section at x=0 

4.2 Material Region Properties 

The stiffness matrices of the resin, axial braiders, *6 planar braiders, and +8/+$ 
undulating braiders, must be expressed in the global coordinate system before the average 
properties of the unit cell can be determined. First, the 6x6 orthotropic stiffness matrix, 
[Cl, expressed in the local material coordinate systems, was determined for the resin and 
braiders directly from the Young’s moduli and Poisson’s ratios listed in Table 1. Then the 
[C] matrices were transformed into the global coordinate system using the transformation 
matrix, p], as shown in Eq. (20). 

[Ql = ITI-?CI[Tl (20) 

The matrix [T] is formed from the direction cosines between the material coordinates and 
the global coordinates. The material directions of the HI planar braiders, and +8/+ 
undulating braiders are expressed in Eq. (21) and (22), respectively. The material 
directions of the axial braiders are coincident with the global coordinate system, and the 
resin is isotropic. Therefore, the transformation was applied only to the H3 planar braiders, 
and + 8/+ 4 undulating braiders. 

(21) 

<I iI [ UXe sine 0 % 
e, = -cosqsinCl cos+3~sO sin@ $, 

e2 II 
sin$sine cos~cos9 cos eZ 

(22) 

The [Q] matrix is a full 6x6 anisotropic constitutive matrix. Enforcing a plane-stress 
condition reduces [Q] to the laminate constitutive matrix, to], expressed in Eq. (23). The 
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j=1,2 terms refer to the in-plane extensional properties while the j=6 terms pertain to the 
in-plane shear properties. 

4.3 Calculating the Effective Cross-Sectional 
Stiffness 

(23) 

Flexural and Extensional 

The [A], [B], and [D] matrices were evaluated for each material region by integrating the 
stiffness matrix in the through thickness direction, z, as shown below. 

(24) 

Because planar sections are idealized to remain plane during deformation, the effective 
[A*], [B*], and Ir>*] matrices can be calculated for each cross section by integrating the 
[A], p], and [D] matrices along the width of the cross section as shown in IZq. (25) and 
(26). The subscripts 2 and t denote the longitudinal and transverse orientation of the neutral 
axis 

[A*][ = (” [Ala5 -Iv 

1~7~ = r rBldx -w 

[D*lI = r [Dldr -Iv 

(25) 

(26) 
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The effective extensional and flexural moduli as a function of distance along the neutral 
axis, can be obtained from [A*] and [D*] as demonstrated in the following section. 

4.4 Upper and Lower Bound Estimates of Homogenized Mod&i 

A simple form of variational analysis was employed to calculate pseudo lower and upper 
bound estimates for the homogenized extensional and flexural Young’s moduli from ‘the 
cross sectional [A*] and [D*] matrices. The upper bound was obtained by averaging the 
effective stiffness matrices, [A*] and [D*], along the neutral axis, as demonstrated by Eq. 
(27) 

1 , 

I M*lr& 
([A*l)r = -’ 

;4 
-I 

(27) 

Analogously, the lower bound was obtained by averaging the effective compliance 
matrices, [a*] and [d*], along the neutral axis, as demonstrated by Eq. (28), where 

1 
I b*l& 

([& = -+- (28) 

I dr 
-I 

[a*]=[A*]-’ and [d*]=[D*]-‘. From the averaged stiffness and compliance matrices, the 
homogenized extensional and flexural moduli in the transverse and longitudinal directions 
were obtained as follows: 
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(30) 
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The superscripts, I and u, refer to lower and upper bound estimates, respectively. Note, 
these quantities are not true 3-D lower and upper bounds since neither appropriate stress 
or deformation fields were imposed to evaluate them. However, within the context of a 2- 
D plane-stress theory, the upper bound estimates may be viewed as true upper bounds. 

4.5 Analytical Results 

The geometric and material properties of the unit cell used in the FlZA were again used in 
the homogenization analysis. In the following sections, the pseudo upper and lower bound 
estimates of the homogenized moduli, and the terms of the bending-extension coupling 
matrix are presented and compared to the FE results. 

4.5.1 Upper and Lower Bound Estimates of the Homogenized Mod&i 

The. effective moduli, E” and Ef*, as a function of distance along the neutral axis are 
plotted in Figures 4.3 to 4.6. Little variation is observed in the longitudinal effective 
moduli. The minimum and maximum values of El* differs only by 0.5% as compared to 

the 82% difference between the minimum and maximum values of E*,. Similarly, the 

minimum and maximum of EJ* differs by 21% as compared to the 93% difference for EB*. 
The cause of the distributions can be understood by examining the braid architecture of the 
unit cell. 

As illustrated in Figure 4.1, the cross-sectional areas of the &I braiders and the axial 
braider remain constant along the longitudinal direction. Only the cross sectional areas of 
the & planar braiders and the &/@ undulating braiders, the sum of which gives the 
cross-sectional areas of the *Cl braiders, vary along the longitudinal direction. Thus, the 
distribution observed in the effective longitudinal moduli is the direct result of this 
material distribution. The variation for the effective moduli is small because of the small 
difference in stiffness properties between the undulating and planar +8 braiders. This can 
be attributed to the small crimp angle, $=S. 79”, 

Similarly, the distribution of the Et* modulus reflects the distribution of the axial braider 

material as shown in Figure 4.2. The regions of high and low Et* corresponds to the 
presence and absence of the axial fiber in the transverse cross sections. 

The dramatic variation in the Efi* modulus is directly caused by the undulation in the off 
axis braiders. In the non-undulating regions, the cross-section of the &Cl braiders are at 
their maximum distance from the neutral axis as shown in Figure 4.2a. During undulation, 
their cross-section moves towards the neutral axis so that at x=*&2 their midplane lies on 
the neutral surface as shown in Figure 4.2b. These two regions correspond to the regions 
of minimum and maximum Ep*. The axial braiders do not contribute significantly to Efi* 

or the local variation in Er* because their midplane always lies on the neutral surface. 
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Figure 4.3 Distribution of the effective longitudinal extensional Young’s modulus 
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Figure 4.4 Distribution of the effective longitudinal flexural Young’s modulus 
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Transverse Extensional Modulus 

Figure 4.5 Distribution of the effective transverse extensional Young’s modulus 
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Figure 4.6 Distribution of the effective transverse fIexuraI Young’s modulus 

&~tic prOpdies of Large Tow 2-D Braided Composites by Numexical and Analytical Methods September 9.1998 21 



Table 3 presents the upper and lower bound estimates of the homogenized Young’s 
moduli, <E*> and <Ef*>, and compares them with the FE results. The estimated 
homogenized extensional properties are within 15% of the FE results. The estimates for 
<III*> and the corresponding FE value only differ by 2%. Consequently, it can be 
assumed that the homogenization method allows a quick and accurate method to 
determine overall longitudinal extensional stiffness of the unit cell. 

TABLE 3. Upper and Lower Bound Estimates of Homogenized Extensional and Flexural 
Young’s Moduli 

El WW E&GPa) &I GW Eft GW 

Upper Bound Esti- 52.836 8.729 21.595 6.467 
mates 
Lower Bound 52.836 7.819 21.492 6.164 
Estimates 
FE Calculations 51.926 7.646 16.610 5.419 

4.5.2 The Bending-Extension Coupling Terms 

The terms of the bending-extension matrix were calculated to be zero. Coupling between 
the bending and extensional properties of the unit cell is not present because of the 
symmetric distributions of the +6 planar braider materials and the +8/+@ undulating 
braider materials about the midplane. 
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5.0 Summary and Discussion 

A unit cell model of the braided composite was developed. The elastic extensional and 
flexural properties of the cell were determined by two techniques: (1) a 3-D FE analysis, 
and (2) a 1-D homogenized beam analysis. The results of both analysis showed that the 
overall fiexural Young’s modulus of the unit cell was significantly smaller than the 
extensional modulus. In addition, no noticeable coupling between the bending-extension 
responses and the shear-extension responses was observed. Although less rigorous and 
accurate than the full 3-D FE simulation, the simple 1-D homogenized beam analysis 
provided reasonable estimates for the longitudinal extensional and flexural moduli. 

Using Eq. (31) (Whitcomb et al, 1998) and the FEA results, the effective flexural stiffness 
for a multi-ply laminate was calculated as a function of the number of plies, n. The ratio of 
the flexural to extensional Young’s moduli is plotted in Figure 5.1 for the longitudinal and 
transverse directions. The plot shows that for n=4 plies, the extensional moduli 
approximates the flexural moduli within 5%. For n-c4 plies, the two homogenized moduli 
differ considerably. 

Ef = Ef ,+E l-1 
n ( 1 n 

(31) 

Flexural Stiffness of Laminate Structures 

number of plies 

Figure 5.1 The flexural stiffness of a laminate structure as a function of the number of plies 

In general, the elastic response of a braided laminate structure with more than four plies 
can be accurately represented using only the effective extensional properties. However, to 
model a braided laminate made with only a few plies or a section of a delaminated braided 
structure, distant lamina-level extensional and flexural properties are necessary to 
accurately characterize its elastic response. The primary physical reason for this is that in 
braided systems the fibers undulate through the entire lamina thickness, and, consequently, 
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the fibers are non-uniformly distributed, in the through-thickness direction, through out 
the RVE. 

The behavior and modeling requirements for braided composites differ from those for 
traditional unidirectional composites. Because the fibers are relatively straight in 
unidirectional systems, many essentially identical, relatively small, RVEs are distributed 
uniformly through the thickness of a lamina. As noted by Pagan0 (1974) and Whitcomb et 
al (1998), when many RVEs exist through the thickness of a structure, the structure’s 
effective flexural moduli approximately equals the RVE’s effective extensional moduli. 
Consequently, only the effective extensional properties are needed to accurately represent 
the elastic behavior a laminate, a single lamina, or even a small portion of a lamina in 
unidirectional systems. 
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